Standalone GPS Receivers
Still Relevant Today?

Dave Pitney
Earth & Spatial Sciences
University of Idaho
Topics

- Use Cases
- GPS Accuracy
- Smartphones
- GPS Receivers
- Questa Maps
Nice Map ;)}
GPS Use Cases

- Navigation by Public
- Every Day
 - Auto, locate restaurant, store, follow a path
 - 2D World
 - Mistake? - take next right (city based)
- A “Trying” Day
 - Off trail, adverse conditions, return base-camp, research
 - 3D World
 - Mistake? - bad. (remote)
GPS Accuracy

- Position
 - How close to true
- Reliable
 - Consistency between measurements
- Integrity
 - Satellites operating “correctly”
- Error Sources
 - GPS satellite system, receivers, geography
Accuracy – Fiendishly Complex

- Multiple – variable, random, interactive conditions
 - Difficult to measure or adjust for in timely manner

- Error Sources (+/- m)
 - “Up There” \(\text{SBAS}\) correctable
 - Ephemeris (2.5), clock drift (2), signal arrival (3), ionospheric (5), tropospheric (humidity) (0.5)
 - “Down Here”
 - Multi-path (1), satellite constellation geometry, obstructions, receiver noise/design, user errors...
Position Accuracy
Position Accuracy

- **EPE** “Estimated Position Error”
 - Horizontal (elliptical plot)
 - 50% of positions within EPE (50% are outside)
 - 95% confidence level EPE x 2.27
 - Vertical EPE x 3

- **DOP** “Dilution of Precision”
 - Satellite constellation geometry, “how sensitive to changes”
 - Confidence level \(\rightarrow 1-5 \Rightarrow \text{Good, 6+} \Rightarrow \text{Careful} \)

- **Always an Estimate...Always**
Device EPE

- Garmin
 - L1 - 15m, GNSSs – 9m, WAAS - 3m, L5 - 1m
 - Calculated now

- Smartphone
 - L1 – 15-60+m, A-GPS – ???, faster startup
 - As reported by GPS chip vendors – optimistic ;()
 - As designed, not calculated now

- How Much Accuracy is Required?
Intentional Signal Interference
Smartphones

- Which Smartphone?
 - 1,430,000,000 (2021 unit sales)
 - Wide range of models, features - simple to complex
 - Position Data - GPS chip set, A-GPS, None
Smartphones

• Advantages
 - Large, dynamic market
 - Many vendors, rapid development cycles
 - Ubiquitous
 - Displays – larger, higher resolution
 - App ecosystem, familiar user interface
 - Maps
 • Google (and friends), maps.me, osmand, topo.com
Smartphones

- Disadvantages
 - A-GPS only -> data connection to GPS cache server
 - Positioning - Horizontal (no elevation data)
 - Fragile, not water resistant, battery life/recharge?
 - Low margins -> cost pressures -> GPS chips
 - Higher accuracy -> higher cost $1,000+
 - OS vulnerabilities
 - Data scraping – Carriers, Apps, Social Media, Trackers
GPS Receivers

- Advantages
 - Higher accuracy – L5, SBAS, GNSSs
 - Higher quality - antenna (dual frequency helix), chip set, design, algorithms, signal processing, sat comms
 - GPS core strength (aviation, marine, watches, surveying)
 - Rugged – IPX7/MIL-STD-810, AA battery, autonomous
 - Navigation feature set, track export - GPX format
 - Maps – free and commercial – OSM, hunting, public agencies
GPS Receiver

• Disadvantages
 - Single vendor US (100,000 units/yr ?)
 - Slow development cycle, legacy product?
 - Map format – proprietary, reverse engineered
 - Interface – 1990’s - complicated, confusing
 - Display – small, low resolution
 - Standalone device, $350 ($200 - $900)
Which is Best?

- Every Day Use
 - Convenience, multiple uses, lower accuracy, city
 - Smartphone is your bestie
 - GPS device is more than you need
Which is Best?

- "Trying" Day Use
 - Accuracy, elevation, rugged, extended trips, remote areas
 - GPS device is your partner
 - Smartphone maybe
Questa Maps

- Digital topographical maps for GPS receivers
 - OSM geographic data
 - Contours (m) 30 => 15, NASADEM or AW3D data
 - Display adjusted for hiking
 - Worldwide coverage by country, Polar regions
 - Install via SD card
 - Free (conditions apply)
Aconcagua, AR
Thank You

- Questions?

- Contact – mappitney@gmail.com