### **Summary** - Introduction - Data Hub - Tips for Data Management - Q&A ### Data Hub: Geospatial and Data Sciences Support - U of I Library Data Hub - Located in the Map Room, First Floor, Rm 107 - Individual workstations for specific research software and tools - Collaborative work areas focused on supporting data sciences analysis and visualization - Service desk staffed 11am-3pm, M-F by U of I Data and GIS Librarians, and others - Other Campus Units encouraged to collocate in the Data Hub, including RCDS and Statistical Consulting - Website: <a href="https://www.lib.uidaho.edu/datahub/">https://www.lib.uidaho.edu/datahub/</a> #### Tip #1: Backup your Data #### Common problems Corrupted data, failed hard drive, laptop lost/stolen, mistakes (deletions, user error) #### 3-2-1 Rule - Have at least 3 copies of your data - Store them in 2 different media - Keep 1 copy off-site (geographically differentiated) #### Example plan: - One copy on local hard drive - One copy on OneDrive (geographic replication off-site) - One copy on a physical media device Image from: Vera. 2020. "Best Practice: 3-2-1 Backup Strategy for Home Users & Businesses [Clone Disk]." Retrieved from: https://www.partitionwizard.com/clone-disk/backup-strategy.html Also adapted from: University of Virginia Library Research Data Services + Sciences. 2020. "Data Storage and Backups." Retrieved from: https://data.library.virginia.edu/datamanagement/plan/storage/ ## Tip #2: Never modify raw data; version it as you go As you work on data, copy it and modify the copy, saving it as a new file. Do so repeatedly to avoid changing the original data. If desired, just write-protect the original data. From: DataONE. 2012. "DataONE Education Module: Analysis and Workflows." Retrieved from: http://www.dataone.org/site s/all/documents/L10\_Analysi s Workflows.pptx ## Tip #2: Never modify raw data; version it as you go One recommended procedure is to simply copy your entire project folder (excepting large data files) periodically to maintain old versions. ``` ! |--project_name | |--current | | |--...project content as described earlier... | |--2016-03-01 | | |--...content of 'current' on Mar 1, 2016 | |--2016-02-19 | | |--...content of 'current' on Feb 19, 2016 ``` https://doi.org/10.1371/journal.pcbi.1005510 # Tip #3: Use clear, unambiguous data values when possible Consider the purpose of entering something in a cell or column. Identifiers can be the means to re-using the data with other datasets in the future. Two types of identifiers: - Standardized identifiers: ISBNs, DOIs, species names, language codes - Usually a part of an international registry system - Localized identifiers: record IDs, database keys, site/plot codes, other enumerated codes | index | issn-elec | affiliation | rank | DOI | link | container-title | issued | | |--------|-----------|--------------------------------------|--------|-------------------------|-----------------|----------------------------|------------|--------| | Filter Filte | | 0 | 1477-0296 | University of Idaho, USA | 1 | 10.1177/030913331988 | http://journal | Progress in Physical Ge | 2019-11-19 | Univ | | 1 | 2574-0962 | Department of Chemistry, University | 1 | 10.1021/acsaem.9b01889 | https://pubs.a | ACS Applied Energy Mat | 2019-11-18 | Offic | | 2 | 1365-2664 | Department of Biological Sciences U | 1 | 10.1111/1365-2664.13539 | https://api.wil | Journal of Applied Ecology | 2019-11-16 | NUL | | 3 | 1557-8070 | Department of Physics, University of | 1 | 10.1089/ast.2018.1972 | https://www.l | Astrobiology | 2019-11-15 | NUL | | 4 | 1574-6941 | Department of Molecular & Cell Biolo | 1 | 10.1093/femsec/fiz182 | http://acade | FEMS Microbiology Ecol | 2019-11-15 | NUL | | 5 | 1996-8175 | Research Associate, Academy of Nat | 1 | 10.1002/tax.12124 | https://api.wil | TAXON | 2019-11-15 | NUL | | 6 | 1788-9170 | State Key Laboratory of Crop Biology | 1 | 10.1556/0806.47.2019.44 | https://www | Cereal Research Comm | 2019-12 | A//-// | # Tip #3: Use clear, unambiguous data values when possible #### Also, think about your variable names | Good Name | Good Alternative | Avoid | |------------------|-------------------|-------------------| | Max_temp_C | MaxTemp | Maximum Temp (°C) | | Precipitation_mm | Precipitation | precmm | | Mean_year_growth | MeanYearGrowth | Mean growth/year | | sex | sex | M/F | | weight | weight | W. | | cell_type | СеПТуре | Cell Type | | Observation_01 | first_observation | 1st Obs | From: Hoyt et al. (2019, July 5). datacarpentry/spreadsheet-ecology-lesson: Data Carpentry: Data Organization in Spreadsheets for Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869 # Tip #3: Use clear, unambiguous data values when possible • In many cases, zero is a value, it means something for an observation to be recorded as zero. • In other cases, you simply don't have a value. Don't use zero here, but don't use nothing either. Pick an unrealistic value for your data, like -999, or a code like "NA" or "NULL". • Alternatively, consider error codes (e.g. -333) for cases where you need to note something other than "no value" ### Tip #4: Create metadata | count | Animal List variable name | Animal List Variable Definition | |-------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | Taxon | Taxonomic code: In most cases, comprised of the first letter of the genus and the first three letters the species; if taxonomic designation is a subspecies, comprised of the first letter of genus, species and subspecies, and hybrids are indicated by the first three letters of the genus. See <u>Table 1</u> for details. | | 2 | DLC_ID | Specimen ID: Unique identification number assigned by the DLC at accession of animal. | | 3 | Hybrid | Hybrid status: N=not a hybrid. S=species hybrid. B=subspecies hybrid. If sire is one of multiple possible and animal could be a hybrid, it is designated a hybrid. | | 4 | Sex | Sex: M=male. F=Female. ND=Not determined | | 5 | Name | House name: Animal name assigned at DLC | | 6 | Current_Resident | Resident status: Whether or not the animal currently lives in the DLC colony. | #### **Tip #4: Create metadata** #### Potential Fields to Include: - Variable Name - Variable Definition - Variable Definition Source - How measured - Data units - Data format - Min/max values - Coded values/defs - Null values representation - Precision of measurement - Known issues - Relationship to other variables - Other notes | | А | В | С | D | |---|-------------------|-------------------|-------------|--------------------------------------------------------| | 1 | name | plot_name | group | description | | 2 | mouse | Mouse | demographic | Animal identifier | | 3 | sex | Sex | demographic | Male (M) or Female (F) | | 4 | sac_date | Date of sac | demographic | Date mouse was sacrificed | | 5 | partial_inflation | Partial inflation | clinical | Indicates if mouse showed partial pancreatic inflation | | 6 | coat_color | Coat color | demographic | Coat color, by visual inspection | From: Broman & Woo. (2018) Data Organization in Spreadsheets, The American Statistician, 72:1, 2-10, DOI: 10.1080/00031305.2017.1375989 ### Tip #5: Pick the right tabular format | Location | 2017 | 2018 | 2019 | |------------------|------|------|------| | Moscow | 32 | 15 | 98 | | Coeur<br>d'Alene | 74 | 38 | 105 | | Boise | 143 | 67 | 192 | Wide data: good for human consumption, final outputs for people to read | Year | Location | Count | |------|---------------|-------| | 2017 | Moscow | 32 | | 2017 | Coeur d'Alene | 74 | | 2017 | Boise | 143 | | 2018 | Moscow | 15 | | 2018 | Coeur d'Alene | 38 | | 2018 | Boise | 67 | | 2019 | Moscow | 98 | Long or "Tidy" data: good for machine consumption, for analysis or visualization For more on 'tidy' data: Wickham & Grolemund. (2017). "Tidy data." *R for Data Science*. https://r4ds.had.co.nz/tidy-data.html ### Tip #5: Pick the right tabular format Using scripting tools like R and Python, flipping back and forth is relatively feasible. R (using tidyr): gather() and spread() Python (using pandas): pivot() and melt() Other tools, e.g. SPSS/SAS/Stata/Tableau/Oracle Analytics, possess features for reshaping data too. ### Tip #6: Use standardized date time formats Common examples of date and times: The problem, beyond inconsistency, is that systems may not know how to read the string. ### Tip #6: Use standardized date time formats The international standard for displaying date and times is codified in ISO 8601. ``` Year: YYYY (eg 1997) Year and month: YYYY-MM (eg 1997-07) Complete date: YYYY-MM-DD (eg 1997-07-16) Complete date plus hours and minutes: YYYY-MM-DDThh:mmTZD (eg 1997-07-16T19:20+01:00) Complete date plus hours, minutes and seconds: YYYY-MM-DDThh:mm:ssTZD (eg 1997-07-16T19:20:30+01:00) Complete date plus hours, minutes, seconds and a decimal fraction of a second YYYY-MM-DDThh:mm:ss.sTZD (eg 1997-07-16T19:20:30.45+01:00) ``` From: Wolf & Wicksteed. (1997). Date and Time Formats. https://www.w 3.org/TR/NOTE -datetime Tools are built to understand this format. Often, they enable derivative data to be produced, like month or day of the week. ### Tip #7: Assume others will see your data. Data publishing, sharing, reproducibility, open science. All introduce reasons for people to see your data. - Remember: - Most funders require data sharing. - Many journals expect data sharing. Reduce fear or anxiety about others viewing your work by maintaining good practices (or good enough) during your data management. ### Tip #7: Assume others will see your data. correspondence ## The lesson of ivermectin: meta-analyses based on summary data alone are inherently unreliable withdrawn by the preprint server<sup>5</sup> on which To the Editor — The global demand for prophylactic and treatment options for COVID-19 has in turn created a demand for both randomized clinical trials, and the synthesis of those trials into meta-analyses by systematic review. This process has been fraught, and has demonstrated the inherent risks in current approaches and accepted standards of quantitative evidence synthesis when dealing with high volumes of recent, often unpublished trial data of variable quality. Research into the use of ivermectin (a drug that has an established safety and efficacy record in many parasitic diseases) for the treatment and/or prophylaxis of COVID-19 has illustrated this problem purported with the v and subst. We expecivermectic coming m Since t published patients<sup>7</sup> l relying on substantia close scru Relying studies in severe and impact of urgent ne withdrawn by the preprint server on which it was hosted. We also raised concerns about unexpected stratification across baseline variables in another randomized controlled trial for ivermectin which were highly suggestive of randomization failure. We have requested data from the authors but, as of September 2021, have not yet received a response. This second ivermectin study has now been published, and there is still no response from the authors in a request for data. The authors of one recently published meta-analysis of ivermectin for COVID-19<sup>3</sup> have publicly stated that they will now reanalyze and republish their now-retracted meta-analysis and will no longer include either of the two papers just mentioned. As these two papers 1,6 were the only public policy. We believe that this situation requires immediate remediation. The most salient change required is a change in perspective on the part of both primary researchers and those who bring together the results of individual studies to draw wider conclusions. Specifically, we propose that clinical research should be seen as a contribution of data toward a larger omnibus question rather than an assemblage of summary statistics. Most, if not all, of the flaws described above would have been immediately detected if meta-analyses were performed on an individual patient data (IPD) basis. In particular, irregularities such as extreme terminal digit bias and the duplication of blocks of patient records would have been both obvious and From: Lawrence et al. *Nature Medicine*, Sept 22, 2021. https://doi.org/10.1038/s41591-021-01535-y #### **Summary** - 1. Backup up your data using the 3-2-1 rule. - 2. Never modify raw data; version your data. - 3. Be intentional with data values. - 4. Use a data dictionary or codebook (at least!). - 5. Be aware of long vs. wide data formats. - 6. Use standardized data time formats. - 7. Assume others will see your data and act accordingly. #### Fall 2023 Graduate Student Essentials When: Wednesdays from 12:30pm – 1:30pm Where: Library first floor classroom (Room 120) and live via Zoom September 6: Essential Library Resources, Services, and Skills for Graduate Students **September 13:** Getting started with Zotero September 20: The Textbooks are Too Expensive! Open Educational Resources and **Graduate Students** September 27: Six Questions to Ask before Publishing Your Journal Article October 4: Make Data Management Easier October 11: Web Mapping for Every Discipline – How to Use ArcGIS Online