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MACHINE LEARNING IN PYTHON SERIES

Part |: The Basics Part 2: Generative

Adversarial Networks

(GANEs) - PyTorch

MNIST

Generator O Discriminator
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Part 3: Semantic Part 4: Diffusion Models
Segmentation in In PyTorch
TensorFlow
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GENERA”"

Text to Image (Stable Diffusion)

[IVE ARTIFICIAL IN]

' ELLIGENCE

EDUCATION

ChatGPT passes medical, law, and
business exams

The Al text generator has educators debating its role in the classroom.

Real estate agents say they can’t imagine
working without ChatGPT now

@ By Samantha Murphy Kelly, CNN Business
Updated 4:06 PM EST, Sat January 28, 2023

[y & &

NEWS | 18 January 2023

ChatGPT listed as author on
research papers: many scientists
disapprove

At least four articles credit the Al tool as a co-author, as publishers scramble to regulate

i++:USICO

An Al

that writes music

Musico is an Al-driven software engine that generates music. It can react tof

(5) LISTEN TO DEMOS

Google has developed a music-making Al bot

The Al takeover hits the music industry.

By Chase DiBenedetto on January 29,2023 f L 4 [r]

MY VOICE IS NO LONGER MY PASSWORD —

Microsoft’s new Al can simulate anyone’s voice with 3
seconds of audio

Text-to-speech model can preserve speaker's emotional tone and acoustic environment.

BEN) EDWARDS - 1/9/2023, 2:15 PM

Denoising EEG Signals for Real-World BCI Applications Using GANs

Eoin Brophy'?", Peter Redmond'?, @ ; Andrew Fleury®, Maarten De Vos®5, Geraldine Boylan?
>

itsuse.

Chris Stokel-Walkj

v § 445 co-author on papers

Text to Video

Some publishers also banning use of bot in preparation of
submissions but others see its adoption as inevitable

Science journals ban listing of ChatGPT

and @ Tomas Ward®*

Review

Generative adversarial networks
unlock new methods for

GAN:s for Driving Biological
Research

cognitive science

Classroom

ChatGPT Is Making Universities Rethink Plagiarism

19 Ways to Use ChatGPT in Your

Lore Goetschalckx 12 2@ i, Alex Andonian 3,

Students and professors can’t decide whether the Al chatbot is a research tool—or a cheating engine.

& GitHub Copilot







Generative Al: Learn a latent representation of the distribution of our complex training data and then sample from it

Diffusion, etc.

Training Deep Learning
Data
Transformers, etc.
ChatGPT
Training data Sampling

(e.g. 64x64x3=12K dims)

The cat satonthe ——» ( chair
I |

Input l\k |

Prediction




We are going to build a Shakespeare
GPT using a transformer model.

It will learn from scratch from the

complete works of Shakespeare.

It will emit an eternal stream
of Shakespeare




REVIEW

. Recap from Parts 1-4
- Machine Learning Basics

- Neural Networks

. Tensors

- GPUs and CUDA
. PyTorch

O
PyTorch

<A NVIDIA.

CUDA.




REVIEW OF BASICS

Machine learning is a data-driven method for

creating models for prediction, optimization,

classification, generation, and more MNIST
Python and scikitlearn, TensorFlow, PyTorch
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NEURAL NETWORK BASICS

from sklearn.neural_network import MLPClassifier

# Instantiate a Neural Network and train our model
nn = MLPClassifier(hidden_layer_sizes=(50,25),
max_iter=50,
n_iter_no_change=50,
activation = 'relu’,
solver="adam',
random_state=42,
verbose=True)
nn.fit(X_train, y_train)

output layer

input layer
hidden layer 1 hidden layer 2

Activation Functions

< Wk ) meOma
+b _@ tanh " Maxout
@5 i)

max(w! z + by, wl x + by)

ReLU ELU
max(0, ) {w ) z>0
Weights and Biases . a(e®—1) 2<0 =—~F



A tensor is an N-dimensional array of data

Rank O Rank 1 Rank 2 Rank 3
Tensor Tensor Tensor Tensor
scalar vector matrix



FULLY-CONNECTED NEURAL NETWORKS
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FEATURE HIERARCHIES

Low level features Mid level features High level features

Edges, dark spots Eyes, ears, nose Facial structure

We need image filters to help us extract features



Core Core

L1 Cache L1 Cache

Core Core
L1 Cache L1 Cache

L2 Cache L2 Cache

GPU vs. CPU

L3 Cache

DRAM

“Moore’s Law for CPUs is Dead”



WHY GPUS EXACTLY?

. CNNs are all about matrix and vector
operations (multiplication, addition)

- GPUs can perform parallel multiplication
and addition steps per each clock cycle.
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GPU

Frameworks make GPUs Easy
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. NVIDIA PyTorch

Tensor cupDaA

O PyTorch

AMD
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PyTorch




TRANSFORMER

MODELS
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BACK IN THE OLDEN DAYS (5 YEARS AGO)

- Sophisticated language models are not possible with simpler,
traditional neural networks.

- Multi-level Perceptrons (MLPS) sequentlal information is lost
(forgotten).

. Recurrent Neural Networks (RNNs): They can work with
sequential data! Yay!
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But...  *Training is slow and sequential. ® ® ©
* Vanishing gradients limit context length $ t f
N . D,
- Long Short-Term Memory (LSTMs): A form of RNN with ‘ { A EL § & { A
improved memory...but still slow to train without parallelism. sty U,




Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@Qgoogle.com noam@google.com nikip@google.com usz@google.com
Llion Jones® Aidan N. Gomez" f Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google. com aidan@cs. toronto.edu lukaszkaiser@google.com

Mlia Polosukhin®
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

In 2017, everything changed.




TRANSFORMER MODELS

Works only on sequential data
Uses a new method called “Attention” or ”Self-Attention”

Replacing CNNs and RNNs across many data modalities

- (text, images, video, audio)

Fast to train (very parallelizable)

Output

Probabilities
|  Softmax
t
[ Linear
4 A
| Add & Norm J==~
Feed
Forward
Y }
s 1 3 | Add & Norm J==~
Add 8 Norm J Multi-Head
Feed Attention
Forward T )7 Nx
Noc LAdd & Norm Je=
Add & Norm ] Nasked
Multi-Head Multi-Head
Attention Attention
\. J \ ——
Positional @_@ ¢ Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Transformer Architecture



Large Language Models @ *, Bard .%

Science and Engineering

Audio and Speech

Computer Vision

CHATGPT
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USES OF TRANSFORMERS

ANTHROPIC

CLAUDE

[B blocks)

A0 atrustie

= Recycling {ihies trnes)

AlphaFold uses transformers for protein folding

I'm a token!

Vision
ransformers

"dog smiling
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[[] understand branch structure
[[] understand structurally close atoms

Chemistry

Classification

Basophil

Linear Projection

Monocyte
> M';P —|_> Lymphocyte

Eosimophil

Localization



Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information

T

Encoder self-attention: —_|

tokens look at each other

queries, keys, values
are computed from
encoder states

Probabilities
. . [ Softmax |
Residual connections
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Output

(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

T

Decoder-encoder attention:
target token looks at the source

queries — from decoder states; keys
and values from encoder states

T

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states



DECODER-ONLY TRANSFORMERS

Q @ 2

Look at current text Predict the next word Add word to our Repeat
sequence current text sequence

©

No, really, it predicts next tokens.

And that is all. (But that is a lot!)



PARTS OF A DECODER-ONLY TRANSFORMER

. Tokenizer

- Embedding Layer

- Positional Encoding

. Decoder Blocks

. Self-Attention

Feed Forward

12% —
- Multiple-Head Attention

. Feed-Forward Neural Network

. Normalization

. Output Layer:

- Linear layer + Softmax

Text & Position Embed

*ChatGPT is Decoder-Only



TOKENIZER

Neural networks work with numbers, so let’s convert
text to numbers first.

transformers AutoTokenizer

Tokenize at character, sub-word, word, or partial

1 1 tokenizer = AutoTokenizer.from_pretrained(
sentence levels.

Most language models use subword tokens

text =

LJrﬂTierwd\y encoded _input = Ttokenizer(text)

print(encoded_input)

friend Y n=50257 subwords for GPT-2
Popular Pre-Trained Tokenizers
We're going to go with character-level tokens BERT from Google
Vocabulary Size = about 70 tokens BART and RoBERTa from Meta
Trivial tokenizer! (Just a lookup table.) GPT Tokenizers from OpenAl




TOKEN EMBEDDINGS

Vector = amplitude and direction

Token String Token ID Embedded Token Vector

'<s>' -> 0 -> [ 0.1150, -0.1438, 0.0555, . ]
'<pad>' -> 1 -> [ 0.1149, -0.1438, 0.0547, . ]
'</s>' => 2 -> [ 0.0010, -0.0922, 0.1025, . ]
'<unk>' -> 3 -> [ 0.1149, -0.1439, 0.0548, . ]
' =>4 -> [-0.0651, -0.0622, -0.0002, . ]

' the' -> 5 -> [-0.0340, 0.0068, -0.0844, . ]
', => 6 -> [ 0.0483, -0.0214, -0.0927, . ]
''to' -> 7 -> [-0.0439, 0.0201, 0.0189, . ]
''and' -> 8 -> [ 0.0523, -0.0208, -0.0254, . ]
"of' -> 9 -> [-0.0732, 0.0070, -0.0286, . ]
''a' -> 10 -> [-0.0194, 0.0302, -0.0838, . ]



EMBEDDING LAYER

. Itis a 2D tensor of shape:

vocabulary size X embedding dimension

- OpenAl GPT-3 (Davinci) embedding layer is: 50,257 X 12,888

dog —
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queen —
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06 |09 |01 |04 |-0.7(-0.3[-0.2| pimensionality
reduction of
; ] ] B word
0.8 D.1] 0.2 0.6 |—0.5|-0.1 embeddings
from 70 to 29
=0.8|-04]-0.5] 0.1 09103 |08
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- - 0= . _nelo word
0.7 03 109 0.71 0.1 0.5]1-04 embeddings
from 70 to 2D
.
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¥

Word embedding

Y
Dimensionality

reduction

houses

v
Visualization of word
embeddings in 2D

Vector embeddings capture the deeper semantic
context of a word or text chunk...or image...or
anything.

The semantics of an object are defined by its multi-
dimensional and multi-scale co-occurrence and
relationships with other objects in the training data

Semantic vector embeddings are learned from vast
amounts of data.



EMBEDDING
LAYER

A compressed, lossy
version of the entire
training corpus.

Semantics expressed
only as

hyperdimensional
relationships between
tokens.

The semantic
embedding layer is
what the transformer
operates on.

Gestalt representation
of human language,
concepts, facts, and
more as scraped off

the internet.

GPT3:

Internet compressed
to 2.6GB spreadsheet

Token embeddings are
learned as the LLM
trains on next token
prediction.




OUR Al SHAKESPEARE
EMBEDDING LAYER

» Vocab Size = 107 unique characters

- Embedding Size = 64

- Number of Layers = 6

- Number of Attention Heads per Layer: 8




Layer: | 5 4 Attention:| Input - Input %
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tire tire




SELEF-ATTENTION HEADS

Output Multi-head attention
Probabilities
1 t
(_Softmax_ Linear
|  Linear |
- \ Concat We used multiple heads
| Add & Norm 1
Feed c
Forward Scaled Dot-Product . Each head focuses on a
Attention Scaled dot-product attention . .
= T T T different semantic or
i Orm 418 48 |
e Ij -~ = -~ t contextual aspect of
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(shifted right)



SELF*ATTENTION HEAD trainable

weights

sequence

. ’ embedding X wa
- For every token in the input sequence matrix

(context window) compute three vectors:

- Query (Q) - A vectorized encoding that
captures how much each token in the sequence X
should be attended to relative to the current

token.

— A vectorized encoding used to
represent a scoring of each token’s query.

- Value (V) - A vectorized representation of the

actual content of the token.




SELF-ATTENTION SCORE CALCULATION

- For every token, compute the dot
product between this token’s QQ
vector and all other K vectors.

. Attention Score = Q * KT

. The result is an n X n matrix where
n = sequence length (context
window size)

- Scale by sqrt(len(K))
. Softmax() -> attention weights

» Output = Attention Weights * V
vector

Dot product

Algebraic definition :
Taking the vectors a=[a,,a,, ...,a,] and b=[b,,b,, ...,b,] with vector space n,

the dot product is

n
a-b= leaibl. =ab +a,b,+---+a,b,
=

Geometric definition : 8 = arccos(z+y/1z11y))

The dot product of two Euclidean vectors a and b is
a-b = [alJp| cos®
where 8 is the angle between vectors and |[a| and ||b|| their respective magnitudes

Y

Big O Notation
0(n2)
(0] . .
T / o Pairwise dot products are O(n?)
| l
=
—/ o) Transformers are O(n?)
Input Size —» n = size of context window




SELF-ATTENTION SCORES - PART 2

dense linear network

Multi-head attention to combine multi-head output

Qutput
Probabiiities
[ Softmax__| : :
= Multiple heads in parallel
p N Concat (OpenAl GPT3 = 96 heads)
1
Scaled Dot-Product
Attention " Scaled dot-product attention
r__‘l r__‘[- r__ |
Tiﬂt;r:zd | | [hnear [Linear lli Lnnearﬂ
| 7 ) N ¥ Y Y
Add & Norm
Masked v K Q
Multi-Head
Attention 7aom-In
: : Zool
\ —
Positional
@_® Encoding
Output
Embedd
= EI — Repeat layers S
Outputs (GPT3 uses 96 layers)

(shifted right)

All dot products and self-attention
scores for a given transformer
block can be computed in parallel.

(yay GPUs!)

Successive transformer block layers
must be sequential



FEED FORWARD NETWORK (FFN) LAYER

Output tensor

(batch, sequence_len, vocab_size) Hidden
layer

Input

Output
Output

Probabilities
layer
Herel :
Linear E" %
3 - ]
rl Add & Morm |'¢-':|
Fead . . .
Foward Unlike self-attention scoring, operates on
(3 & Norm )~ . - each position separately
——— expansion projection
Aftention
) N3¢ : e
Adds representation capability for each
: :
Tasked token in the sequence (context window)
hMulti-Head .
Attention independently
-
\, —
Positi I
&) Encoding Allows network to make complex
Embecding transformations on the sequence data after
) I self-attention scores are computed
utputs

(shifted right)



Output
Probabilities

Softmax
Linear
3

-
| Add & Narm |-l-~.

Fead
Forward
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Multi-Head
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Output
Embedding

Outputs
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POSITIONAL ENCODING!

Almost
Forgot!!

Transformers work on sequences BUT they don’t track sequential order
(attention scores are calculated in parallel!)

Sequential order of tokens is pretty important in language ©

We need to tell the transformer about the order of words




We obviously need another tensor!

Index
Sequence  of token

| 0

am — 1

Robot —» 3 —

Positional Encoding Matrix for the sequence 'I am a robot’

POSITIONAL ENCODING

Positional Encoding Matrix

Poo

P1o

P20

P30

Po1

P11

Po1

P31

Pod

P14

P24

P3ad

Equa&ion

sin(27xt)

sin(2 * 2xt)

sin(?)

sin(ct)

Sinusoidal Position Encoding

Grraph Frequency Wavelength
&:1// % 1/2n 2r

‘Depend.s on ¢ c/2rx 2z/c



Pasition of Word

SINUSOIDAL POSITIONAL ENCODING

k
P(k,2i) = sin( )
nd Even positions are sin()
: k .
P(k,21+ 1) = cos{ _ ) Odd positions are cos()
nzl.fd
o Token String Token ID Embedded Token Vector
v '<s>' -> @ -> [ 0.1150, -0.1438, 0.0555, ...
‘<pad>' -> 1 -> [ 0.1149, -0.1438, 0.6547, ...
025 '</s>' -> 2 -> [ 0.0010, -0.0922, 0.1025, ...
'‘<unk>' -> 3 -> [ 0.1149, -0.1439, 0.6548, ...
000 + '.'=> 4 -> [-0.0651, -0.0622, -0.0002, ..
' the' -> 5 -> [-0.0340, 0.0068, -0.0844, ...
02 ',' -> 6 -> [ 0.0483, -0.0214, -0.0927, ...
' to' -> 7 -> [-0.0439, 0.0201, 0.0189, ...
050 ‘'and' -> 8 -> [ 0.0523, -0.0208, -0.0254, ...
' of' -> 9 -> [-0.0732, 0.0070, -0.0286, ...
| o "a' -> 10 -> [-0.0194, 0.0302, -0.0838, ...
|| -1.00

150 200 250 300
Index of Word Embedding Dimension

-
el bd hd bl bd bed bd b el b B



UMMMM ..

If I add these sinusoidal waveforms to the existing values in
my token embeddings for my current sequence, doesn’t
that change the semantic meaning of my tokens????

Absolutely.  And that’s okay.

A token’s semantic meaning DOES change depending on its
relative position within a sequence.

Relax. The transformer will figure this all out during training.

Luke destroyed the Death Star

The Death Star destroyed Luke

—=oah




The Entire GPT3-175B (Davinci) Transformer Architecture on a Napkin

| 75 Billion Trainable Parameters

— % %w Siwg ]‘ e “‘";,%.%.1)% :U%wﬂ@* = - . B S
@ ZWL% ©-— e % 4’ | + %mi > %““ <EP)A m\g 2 2 B 60257 Sofhe LEU_fi_! ok 204d.
g -00)- "= . ’ T T 1,%:%: = e ”‘\j\)a‘% = S = aEE R o] - [0
[l 2
GPT-3 training data''*® COMMON
Proportion ( CRAWL .. .
Dataset # tokens o
within training Training GPT3 Davinci:
Common Crawl 410 billion B0%G:
$4.6 Million in Azure
illi (=]
WebText2 19 billion 22% @ 335 GPU Years (V | 00)
Books1 12 hillion 8%

Books2 55 billion 8% O p en A I Today: ~$500K

Wikipedia 3 billion 3%
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A SHORT WORD ABOUT CLIP



USING CLIP IS TRIVIAL

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)

logits_per_image, logits_per_text = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]

https://github.com/openai/CLIP

Zero-shot classifications!

Conditioning Generative Al (DALL-E)
Generating captions for images or video
Image similarity search

Content Moderation

Object Tracking

A couple of people standing next to
an elephant.




Size of Embedding Vector

One way to train a multi-modal embedding layer 1
PenI:lyi:znrmte O
O
\ O
O
O
O Learning your semantic
O embeddings first (GPT)
/ O
« o i Train your CNN to predict
A cute Welsh Corg' dog' Convolution Final Feat Fully-connected Class . .
_ and Pooling ST layers probabilities matching embedding vectors
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NOW FOR
CODE

oithub.com/sheneman/shake GPT



http://github.com/sheneman/shakeGPT

Andrej Karpathy

SOME RESOURCES

"I5-17 Co-Founder OpenAl
"17-22 Tesla Al Director
23 Back at OpenAl!

nanoGPT

available GPT implementations “mr6RT_ nanoGPT

. https://github.com/karpathy/nanoGPT
- A 300-ine training loop + 300-line GPT model

- Can load the GPT2 weights
- Also has a Shakespeare demo. Better than mine. ®

° https://www.youtube.com/@AndrejKarpathy


https://github.com/karpathy/nanoGPT
https://www.youtube.com/@AndrejKarpathy
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