
(PA RT 5)

LLMS: TRANSFORMER MODELS IN PY TORCH

LUKE SHENEMAN

MACHINE LEARNING IN PY THON SERIES

Part 1: The Basics Part 2: Generative
Adversarial Networks
(GANs) - PyTorch

Part 3: Semantic
Segmentation in
TensorFlow

Part 4: Diffusion Models
In PyTorch

GENERATIVE ARTIFICIAL INTELLIGENCE

Text to Image (Stable Diffusion)

Text to Video

Generative AI: Learn a latent representation of the distribution of our complex training data and then sample from it

Deep Learning

Diffusion, etc.

Transformers, etc.

Training
Data

We are going to build a Shakespeare
GPT using a transformer model.

It will learn from scratch from the
complete works of Shakespeare.

It will emit an eternal stream
of Shakespeare

REVIEW

• Recap from Parts 1-4
• Machine Learning Basics
• Neural Networks

• Tensors

• GPUs and CUDA

• PyTorch

REVIEW OF BASICS

• Machine learning is a data-driven method for
creating models for prediction, optimization,
classification, generation, and more

• Python and scikit-learn, TensorFlow, PyTorch

• MNIST

• Artificial Neural Networks (ANNs)

MNIST

NEURAL NET WORK BASICS

Weights and Biases

FULLY-CONNECTED NEURAL NET WORKS

Images are tensors!

FEATURE HIERARCHIES

We need image filters to help us extract features

“Moore’s Law for CPUs is Dead”

GPU vs. CPU

WHY GPUS EXACTLY?

• CNNs are all about matrix and vector
operations (multiplication, addition)

• GPUs can perform parallel multiplication
and addition steps per each clock cycle.

Frameworks make GPUs Easy

TRANSFORMER
MODELS

BACK IN THE OLDEN DAYS (5 YEARS AGO)…
• Sophisticated language models are not possible with simpler,

traditional neural networks.

• Multi-level Perceptrons (MLPs): sequential information is lost
(forgotten).

• Recurrent Neural Networks (RNNs): They can work with
sequential data! Yay!

• Long Short-Term Memory (LSTMs): A form of RNN with
improved memory…but still slow to train without parallelism.

“Old man tinkering with RNNs” - Midjourney

But… * Training is slow and sequential.
 * Vanishing gradients limit context length

In 2017, everything changed.

TRANSFORMER MODELS

• Works only on sequential data

• Uses a new method called “Attention” or ”Self-Attention”

• Replacing CNNs and RNNs across many data modalities
• (text, images, video, audio)

• Fast to train (very parallelizable)

Transformer Architecture

USES OF TRANSFORMERS

• Large Language Models

• Science and Engineering

• Audio and Speech

• Computer Vision

AlphaFold uses transformers for protein folding Chemistry

DECODER-ONLY TRANSFORMERS

Look at current text
sequence

Predict the next word Add word to our
current text sequence

Repeat

And that is all. (But that is a lot!)

PARTS OF A DECODER-ONLY TRANSFORMER

• Tokenizer

• Embedding Layer

• Positional Encoding

• Decoder Blocks
• Self-Attention

• Multiple-Head Attention

• Feed-Forward Neural Network

• Normalization

• Output Layer:

• Linear layer + Softmax

*ChatGPT is Decoder-Only

TOKENIZER

• Neural networks work with numbers, so let’s convert
text to numbers first.

• Tokenize at character, sub-word, word, or partial
sentence levels.

• Most language models use subword tokens

• We’re going to go with character-level tokens
Vocabulary Size = about 70 tokens

Trivial tokenizer! (Just a lookup table.)

n = 50,257 subwords for GPT-2
Popular Pre-Trained Tokenizers

BERT from Google
BART and RoBERTa from Meta
GPT Tokenizers from OpenAI

TOKEN EMBEDDINGS
Vector = amplitude and direction

EMBEDDING LAYER

• It is a 2D tensor of shape: vocabulary_size X embedding dimension

• OpenAI GPT-3 (Davinci) embedding layer is: 50,257 X 12,888

Vector embeddings capture the deeper semantic
context of a word or text chunk…or image…or
anything.

The semantics of an object are defined by its multi-
dimensional and multi-scale co-occurrence and
relationships with other objects in the training data

Semantic vector embeddings are learned from vast
amounts of data.

EMBEDDING
LAYER

A compressed, lossy
version of the entire

training corpus.

Gestalt representation
of human language,
concepts, facts, and
more as scraped off

the internet.

Semantics expressed
only as

hyperdimensional
relationships between

tokens.

GPT3:
Internet compressed
to 2.6GB spreadsheet

The semantic
embedding layer is

what the transformer
operates on.

Token embeddings are
learned as the LLM

trains on next token
prediction.

OUR AI SHAKESPEARE
EMBEDDING LAYER

• Vocab Size = 107 unique characters

• Embedding Size = 64

• Number of Layers = 6

• Number of Attention Heads per Layer: 8

SELF-
ATTENTION

SELF - ATTENTION HEADS

We used multiple heads

Each head focuses on a
different semantic or
contextual aspect of
the input sequence
(i.e. context window)

The heads learn what to
focus on to optimize the
networks

SELF - ATTENTION HEAD

• For every token in the input sequence
(context window) compute three vectors:

• Query (Q) – A vectorized encoding that
captures how much each token in the sequence
should be attended to relative to the current
token.

• Key (K) – A vectorized encoding used to
represent a scoring of each token’s query.

• Value (V) – A vectorized representation of the
actual content of the token.

trainable
weights

sequence
embedding
matrix

SELF -ATTENTION SCORE CALCULATION

• For every token, compute the dot
product between this token’s Q
vector and all other K vectors.

• Attention Score = Q * KT

• The result is an n X n matrix where
n = sequence length (context
window size)

• Scale by sqrt(len(K))

• Softmax() -> attention weights

• Output = Attention Weights * V
vector

Pairwise dot products are O(n2)

Transformers are O(n2)
n = size of context window

SELF -ATTENTION SCORES – PART 2

Multiple heads in parallel

(OpenAI GPT3 = 96 heads)

Repeat layers
(GPT3 uses 96 layers)

All dot products and self-attention
scores for a given transformer
block can be computed in parallel.
(yay GPUs!)

Successive transformer block layers
must be sequential

dense linear network
to combine multi-head output

FEED FORWARD NET WORK (FFN) LAYER

Here!

Unlike self-attention scoring, operates on
each position separately

Adds representation capability for each
token in the sequence (context window)
independently

Allows network to make complex
transformations on the sequence data after
self-attention scores are computed

expansion projection

Output tensor
(batch, sequence_len, vocab_size)

POSITIONAL ENCODING!

Almost
Forgot!!

Transformers work on sequences BUT they don’t track sequential order
(attention scores are calculated in parallel!)

Sequential order of tokens is pretty important in language 

We need to tell the transformer about the order of words

POSITIONAL ENCODING

We obviously need another tensor! Sinusoidal Position Encoding

SINUSOIDAL POSITIONAL ENCODING

Even positions are sin()

Odd positions are cos()

+

UMMMM…

• If I add these sinusoidal waveforms to the existing values in
my token embeddings for my current sequence, doesn’t
that change the semantic meaning of my tokens????

• Absolutely. And that’s okay.

• A token’s semantic meaning DOES change depending on its
relative position within a sequence.

• Relax. The transformer will figure this all out during training.

Luke destroyed the Death Star

The Death Star destroyed Luke

The Entire GPT3-175B (Davinci) Transformer Architecture on a Napkin

175 Billion Trainable Parameters

Training GPT3 Davinci:

$4.6 Million in Azure
335 GPU Years (V100)

Today: ~$500K

A SHORT WORD ABOUT CLIP

USING CLIP IS TRIVIAL

Zero-shot classifications!
Conditioning Generative AI (DALL-E)
Generating captions for images or video
Image similarity search
Content Moderation
Object Tracking

https://github.com/openai/CLIP

Size of Embedding Vector

“A cute Welsh Corgi dog.”

Learning your semantic
embeddings first (GPT)

Train your CNN to predict
matching embedding vectors

One way to train a multi-modal embedding layer

NOW FOR
CODE

github.com/sheneman/shakeGPT

http://github.com/sheneman/shakeGPT

SOME RESOURCES

• https://github.com/karpathy/nanoGPT
• A 300-line training loop + 300-line GPT model

• Can load the GPT2 weights

• Also has a Shakespeare demo. Better than mine. 

Andrej Karpathy

https://www.youtube.com/@AndrejKarpathy

’15-17 Co-Founder OpenAI
’17-22 Tesla AI Director
‘23 Back at OpenAI!

https://github.com/karpathy/nanoGPT
https://www.youtube.com/@AndrejKarpathy

	Machine Learning in Python��(part 5) �LLMs: Transformer Models in Pytorch��Luke Sheneman
	Machine Learning in Python Series
	Generative Artificial Intelligence
	Slide Number 4
	Slide Number 5
	Review
	Review of basics
	Neural Network Basics
	Slide Number 9
	Fully-connected Neural Networks
	Feature Hierarchies
	Slide Number 12
	Why GPUs exactly?
	Transformer�Models
	Back in the olden days (5 years ago)…
	Slide Number 16
	Transformer Models
	Uses of transformers
	Slide Number 19
	Decoder-Only Transformers
	Parts of a Decoder-only transformer
	Tokenizer
	Token Embeddings
	Embedding Layer
	Embedding Layer
	Our AI Shakespeare �embedding layer
	Self-Attention
	Self-Attention Heads
	Self-Attention Head
	Self-Attention Score Calculation
	Self-Attention Scores – Part 2
	Feed forward Network (FFN) layer
	Positional Encoding!
	Positional Encoding
	Sinusoidal positional encoding
	Ummmm…
	Slide Number 37
	A short word about CLIP
	Using CLIP is TRIVIAL
	Slide Number 40
	Slide Number 41
	Some Resources

